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Evaluation of two-center overlap integrals using slater
type orbitals in terms of bessel type orbitals
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Using the definition of STOs in terms of BTOs, we have presented analytical
formula for two-center overlap integrals. The obtained formula contains generalized
binomial coefficients and Mulliken integrals Ak and Bk . Taking into account the recent
advances on the efficient calculation of Mulliken integrals (Harris, Int. J. Quantum
Chem., 100 (2004) 142), we have obtained many more satisfactory results for two-center
overlap integrals, for arbitrary quantum numbers, scaling parameters, and location of
atomic orbitals.
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1. Introduction

The ab initio calculations using the LCAO–MO approach, where molec-
ular orbitals are built from a linear combination of atomic orbitals, strongly
depend on the choice of the basis functions for the reliability of the electronic
distributions they provide. A good atomic orbital basis should satisfy two prag-
matic conditions for analytical solutions of the appropriate Schrödinger equa-
tion, namely the cusp at the origin [1] and exponential decay at infinity [2].
Among the basis functions used in the literature, the Slater type orbitals (STOs)
satisfy the aforementioned requirements [3,4]. Unfortunately, the notorious prob-
lems arise in the evaluation of multicenter integrals when STOs used. Due to
the advance in applied mathematics and computer science, there are a progres-
sive interest in the use of STOs in multicenter integrals, (see [3,4] and quoted
therein). Since the calculations of multicenter integrals over STOs is extremely
difficult, STOs are expressed as linear combinations of Bessel type orbitals
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(BTOs) [5] then and all the multicenter integrals can be calculated more easily
(see [6] detailed discussion of BTOs).

Among the multicenter integrals, two-center overlap integral constitutes the
basic building block of many more complicated multicenter integrals since the
expectation value of one-electron operators can be expressed as linear combi-
nation of two-center overlap integrals, and also since two-electron integrals can
be calculated by taking quadrature of two-center overlap integrals. At the same
time, these type integrals also contribute to the total energy of the molecule
which is required to a precision sufficient for small fraction changes to be evalu-
ated. In practice, an error in the range of 10−8–10−10 in integrals will deteriorate
the energy by an amount of 10−3 atomic units (a.u.) [4].

Recently, we have presented analytical, series and recurrence relations for
the evaluation of multicenter integrals over STOs [7]. In this work, we are
dealing with the evaluation of two-center overlap integrals using STOs as linear
combinations of BTOs, which seems to be quite promising for use in ab initio
calculations.

2. General definitions and basic formulas

In the most real case, a STO is defined as follow:

χnlm (α, �r) = Nn (α) rn−1e−αrSlm (θ, ϕ) , (1)

where α is scaling parameter and Nn (α) is the normalization coefficient given by

Nn (α) = (2α)n+ 1
2

√
(2n)!

(2)

and Slm (θ, ϕ) denotes the real spherical harmonic [8]:

Slm (θ, ϕ) = Pl|m| (cos θ) �m (ϕ) , (3)

in which Pl|m| is the normalized associated Legendre function and the �m (ϕ) is
defined by

�m (ϕ) = 1√
π (1 + δmo)

{
cos mϕ for m � 0,

sin |m| ϕ for m < 0.
(4)

Using the expansion formula for unnormalized STOs in terms of BTOs [5],
we re-express normalized STOs as finite linear combination of BTOs as

χnlm (α, �r) = �n (α)

n−l∑
p=p̂

K
p

nlB
m
p,l (α, �r), (5)
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where

�n (α) = α1−nNn (α) , (6a)

K
p

nl = (−1)n−l−p (n − l)! (l + p)!2l+p

(2p − n − l)! (2n − 2l − 2p)!!
, (6b)

and

p̂ =
{

(n − l) /2 if n − l even,

(n − l + 1) /2 if n − l odd.
(7)

In equation (5), a BTO is defined as follow [5]:

Bm
nl (α, �r) = (αr)l

2n+l (n + l)!
k̂n− 1

2
(αr) Slm (θ, ϕ) , (8)

where k̂n− 1
2

is reduced Bessel function defined by

k̂n− 1
2
(z) = z−1e−z

n∑
j=1

(2n − j − 1)!
(j − 1)! (n − j)!

2j−nzj . (9)

3. Two-center overlap integrals over STOs

Two-center overlap integrals examined in the present work have the follow-
ing form:

Snlm,n′l′m′
(
α, β; �R

)
=

∫
χ∗

nlm (α, �ra) χn′l′m′ (β, �rb) dV , (10)

where χnlm (α, �ra) and χn′l′m′ (β, �rb) are STOs located on centers a and b, and �R
is the radius vector given by �R ≡ �Rab = �rb − �ra.

Substituting equation (5) into equation (10), we obtain the following rela-
tion for two-center overlap integrals over STOs

Snlm,n′l′m′
(
α, β; �R

)
= �nn′ (α, β)

∑
p,q

Knl,n′l′
pq Iplm,ql′m′

(
α, β; �R

)
, (11)

where

�nn′ (α, β) = �n (α) �n′ (β) , (12a)

Knl,n′l′
pq = Knl

p Kn′l′
q . (12b)
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In equation (11), Iplm,ql′m′ is the integral of the form:

Iplm,ql′m′
(
α, β; �R

)
=

∫
Bm

pl (α, �ra) Bm′
ql′ (β, �rb) dV , (13)

and called two-center overlap integrals between two BTOs. In the literature,
this type of integrals are calculated by one center expansion method (reduc-
tion theorem) [9] and Fourier transform convolution theorem [10]. It is known
that Fourier transform convolution theorem injure from some possible insta-
bility problems [11] and we think that one center expansion method may also
injure from possible instability problems due to the fact that this method con-
tains approximations.

To overcome the possible instability problems occurring in the calculation
of two-center overlap integrals, using rotation coefficients for two-center overlap
integrals [12], we express the integral in equation (11) as

Iplm,ql′m′
(
α, β; �R

)
=

min(l,l′)∑
λ=0

T λ
lm,l′m′ (θ, ϕ) Iplλ,ql′λ (α, β; R), (14)

where T λ
lm,l′m′ (θ, ϕ) is rotation coefficients for two-center overlap integrals and

Iplλ,ql′λ

(
α, β; �R

)
=

∫
Bλ

pl (α, �ra) Bλ
ql′ (β, �rb) dV . (15)

Using the definition of the reduced Bessel functions given by equation (9) into
equation (15), we express the overlap integral of two BTOs by the following
formula:

Iplλ,ql′λ (α, β; R) = γ ll′
pq

p,q∑
i,j

ηpiηqjα
l+i−1βl′+j−1

×
∫

rl+i−1
a r

l′+j−1
b e−αra−βrbPlλ (cos θa) Pl′λ (cos θb) dV , (16)

where

γ ll′
pq = [

(p + l)!!
(
q + l′

)
!!
]−1

, (17)

and

ηpκ = Fκ−1 (2p − κ − 1)

Fp−κ (2p − 2κ) (p − κ)!
2κ−p. (18)

Here Fm (n) is usual binomial coefficient defined by

Fm (n) = n!
m! (n − m)!

. (19)
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As can be seen equation (16), it is necessary to have an equation for the
expansion of the product of two normalized associated Legendre functions cen-
tered on a and b:

T lλ,l′λ (θa, θb) = Plλ (cos θa) Pl′λ (cos θb) . (20)

Recently [7a], we have presented the expansion formula for the product of
two normalized associated Legendre functions in ellipsoidal coordinate system
(µ, ν, ϕ) as

T lλ,l′λ (µ, ν) =
∑
k,k′

∑
u,s

akk′
us

(
lλ, l′λ

) (µν)s

(µ + ν)l−2(k+k′+λ)+2u (µ − ν)l
′ , (21)

where the expansion coefficients are

akk′
us

(
lλ, l′λ

) = Ck
lλC

k′
l′λ (−1)u Fu

(
k + k′ + λ

)
×Fs

(
l − 2k − λ + 2u, l′ − 2k′ − λ

)
, (22)

and

Ck
lm = (−1)k

22k+m

[
2l + 1

2
Fl−k (l + m) Fk+m (l − k) F2k (l − m) Fk (2k)

]1/2

(23)

and the ranges of the summation indices k, k′, u, and s are as follows:

0 � k � E
(

l−λ
2

)
, 0 � k′ � E

(
l′ − λ

2

)
,

0 � u �
(
k + k′ + λ

)
, 0 � s �

(
l + l′

) − 2
(
k + k′ + λ

) + 2u. (24)

In equation (22), Fm

(
N, N ′) is called generalized binomial coefficients [12,

13] and recently we have re-expressed this quantity in terms of usual binomial
coefficients as [14]

Fm

(
N, N ′) =

m∑
i,j=0

(−1)N
′−j Fi (N) Fj

(
N ′) δm,i+j . (25)

Consequently, using equation (21) and ellipsoidal form of the radial part
included in equation (16), two-center overlap integrals between two BTOs take
the form:

Iplλ,ql′λ (α, β; R) = γ ll′
pq

p,q∑
i,j

ηpiηqjα
l+i−1βl′+j−1

[
R

2

]l+l′+i+j+1

×
∑
kk′,us

akk′
us

(
lλ, l′λ

)
Qs

i+2(k+k′+λ−u),j (p, t), (26)
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where

Qs
n,n′ (p, t) =

n+n′∑
m=0

Fm

(
n, n′) An+n′+s−m (p) Bm+s (pt) (27)

and Ak and Bk are the well-known Mulliken integrals [15], and p and t param-
eters are given by

p = R

2
(α + β) , t = α − β

α + β
. (28)

It is advised for readers of interest to see [12b] for Qs
n,n′ (p, t) and their use-

ful recurrence relations.

4. Computational details

The expression we derived for two-center overlap integrals contains general-
ized binomial coefficients Fm

(
N, N ′) and Mulliken integrals Ak and Bk. To speed

up the calculations, we store the generalized binomial coefficients and Mulliken
integrals into the memory of the computer during the compilation of the pro-
gram and we get them from the memory during the calculations. This process is
very memory consuming but also very time gaining.

In storing the generalized binomial coefficients to the memory of the com-
puter, we use the position of a certain Fm

(
N, N ′) is determined by the relation

[16]:

FNN ′m = 1
8

{
N

(
2N2 − 11N + 14

) + 2
[
N ′ (2N + N ′ − 6

)

+βN1 + βNN ′ − 5
]

+ 3βN0
}

+ 1
2 (2 − δNN ′) m + δNN ′ (29)

in which δNN ′ is kronecker delta function and

βNN ′ = 1
2

[
1 − (−1)N+N ′]

. (30)

The symmetry properties of Fm

(
N, N ′) have been taken into account in storing

this quantity.
Other quantities arising in the expression for two-center overlap integrals

are Mulliken integrals Ak and Bk. These integrals have the following form:

Ak (p) =
∫ ∞

1
xke−pxdx, (31)

Bk (pt) =
∫ +1

−1
xke−ptxdx. (32)
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As can be seen from equations (26) and (27), in case of higher quantum
numbers one has to calculate these integrals accurately since these integrals con-
verge very slowly. The Ak (p) integral are only needed for p > 0 and are easily
and stably calculated by upward recurrence relation well-known in literature [17]:

Ak (p) = k

p
Ak−1 (p) + A0 (p) (33)

with starting point

A0 (p) = e−p

p
. (34)

The integral Bk (pt) can not be calculated easily as in Ak (p), since this inte-
gral is not convergent for all k and pt values. In literature, the following recur-
rence relation is known for integral Bk (pt):

Bk (pt) = 1
pt

[
kBk−1 (pt) + (−1)n ept − e−pt

]
. (35)

On the other hand, it is well-known that upward recurrence relation is stable
only for k < |pt | and downward recurrence relation is stable only for k > |pt |.
Corbato presented a procedure for the calculation of integral Bk (pt), stable for
all k and pt values, using modified spherical Bessel functions [18]. However, this
method requires more computational effort than the use of upward or downward
recurrence relations. Recently, Harris has pointed out that the main problem in
the calculation of integral Bk (pt) is to be able to calculate efficiently the start-
ing value for recurrence relation (35) and presented an algorithm for the efficient
calculation of integral Bk (pt) using incomplete gamma functions [19]. A detailed
discussion of expansions for incomplete gamma functions can be found in [20].

5. Computation results and discussion

We have presented an algorithm for the evaluation of two-center over-
lap integrals over STOs, using the definition of STOs in terms of BTOs. The
presented formula contains two-center overlap integrals between two BTOs for
which include generalized binomial coefficients Fm

(
N, N ′), expansion coefficients

for the product of two normalized associated Legendre functions akk′
us

(
lλ, l′λ

)
and Mulliken integrals Ak and Bk.

Based on equation (11), we have constructed a computer program in Math-
ematica 4.0 [21] for the calculation of two-center overlap integrals over STOs.
In constructing computer program, the two-center overlap integrals between two
BTOs and Mulliken integrals have been stored in the memory of the computer
for reducing computational time. As can be seen from equation (11), for any
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quantum sets, overlap integrals between two BTOs can be stored in the mem-
ory of the computer in two dimensional array. Since this operation would take
more computational time, we have derived a memory formula for reducing two
dimensional array to the one dimensional array as follow:

I (n)
pq = pn − (n − q) − p (p − 1)

2
. (36)

Using computer program constructed for equation (11), we have calculated
two-center overlap integrals over STOs for various quantum sets. The compara-
tive values of two-center overlap integrals over STOs have been listed in table 1.
It is seen from table 1 that our computer results are in agreement with the lit-
erature [7b, 22, 23] for wide range of quantum numbers, scaling parameters and
internuclear distances. Also, we notice that the presented algorithm does not suf-
fer from possible instability problems and can be used in molecular orbital cal-
culations when Hartree–Fock–Roothaan approximation is employed. We think
that the main cause of the stability of the algorithm presented here depends on
the use of the expansion formula for the product of two normalized associated
Legendre functions. It should be noted that such algorithms have been presented
in literature [12,13]. It is advised for readers to read [12d] on the interconversion
among the formulae in the literature and more recent developments on the eval-
uation of multicenter integrals based on the use of expansion formula [24].

Works are in progress in our laboratory and some preliminary results on
two-center two-electron integrals over STOs will be reported in short.

In the whole calculations, double precision floating point arithmetic is used.

Table 1
Comparative values of two-center overlap integrals over STOs (in a.u).

n l m n′ l′ m′ α β R θ ϕ This work [eq. (11)] Literature

2 1 0 2 1 0 7.5 2.5 6.0 60 120 −2.01912763169777E-05 −2.01912763169782E-05a

3 2 0 3 2 0 7.5 2.5 5.0 60 120 −6.80340033108123E-05 −6.80340033108473E-05b

4 3 3 4 3 2 3.0 2.0 20 30 60 3.75545611854733E-02 3.75545611854747E-02a

7 3 2 4 3 2 8.5 1.5 30 0 0 1.76861050691297E-18 1.76861050692265E-18a

7 6 4 5 4 4 6.0 4.0 0.8 0 0 2.658829482343624E-01 –
8 7 −6 7 5 5 2.5 1.5 2.4 150 240 −4.44987258245886E-02 –

13 12 11 13 12 11 4.0 4.0 2.5 0 0 −4.01371353396521E-01 −4.01371353397628E-01a

15 8 4 12 8 6 5.0 5.0 1.0 67.5 22.5 2.54324132559121E-03 2.5432413255908E-03c

17 8 4 8 7 4 5.5 4.5 10 0 0 −1.00623367111237E-06c −1.00623367113747E-06c

20 8 2 10 8 1 5.0 5.0 5.0 60 45 7.93865462132564E-04 7.938654621681b

25 12 9 24 10 7 7.5 2.5 3.0 45 60 1.1603598984785E-05 –

aRef. [22]; bRef. [7c]; cRef. [23].
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